
T=T1

for t>0

T1

T=T1 for t>0

Initial Temperature T=Ti at t=0
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At the surface where x=0, T(0,t) = To is plugged into the above 

solution to obtain 

       ∞

∞
 



                                --- (a)  

where,  





  



 



Knowing To, Ti, and T∞, we can calculate T*. First, make an initial 

guess for h and calculate . Now substitute  into equation (a) to see 

if it satisfies the initially guessed value of h. If not, repeat the same 

procedure until it agrees with a previously guessed value of h.
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148 4-4 Convection Boundary Conditions

transfer at the surface. For the semi-infinite-solid problem, the convection boundary con-
dition would be expressed by

Heat convected into surface = heat conducted into surface

or

hA(T∞ − T)x=0 = −kA ∂T

∂x

]
x=0

[4-14]

The solution for this problem is rather involved and is worked out in detail by Schneider
[1]. The result is

T − Ti
T∞ − Ti = 1 − erf X−

[
exp

(
hx

k
+ h2ατ

k2

)]
×
[

1 − erf

(
X+ h

√
ατ

k

)]
[4-15]

where

X= x/(2√
ατ)

Ti= initial temperature of solid

T∞ = environment temperature

This solution is presented in graphical form in Figure 4-5.
Solutions have been worked out for other geometries. The most important cases are

those dealing with (1) plates whose thickness is small in relation to the other dimensions,
(2) cylinders where the diameter is small compared to the length, and (3) spheres. Results
of analyses for these geometries have been presented in graphical form by Heisler [2],
and nomenclature for the three cases is illustrated in Figure 4-6. In all cases the convection
environment temperature is designated as T∞ and the center temperature for x= 0 or r= 0 is
T0.At time zero, each solid is assumed to have a uniform initial temperatureTi. Temperatures
in the solids are given in Figures 4-7 to 4-13 as functions of time and spatial position. In
these charts we note the definitions

θ = T(x, τ)− T∞ or T(r, τ)− T∞
θi = Ti− T∞
θ0 = T0 − T∞

If a centerline temperature is desired, only one chart is required to obtain a value for θ0 and
then T0. To determine an off-center temperature, two charts are required to calculate the
product

θ

θi
= θ0

θi

θ

θ0

For example, Figures 4-7 and 4-10 would be employed to calculate an off-center temperature
for an infinite plate.

The heat losses for the infinite plate, infinite cylinder, and sphere are given in
Figures 4-14 to 4-16, whereQ0 represents the initial internal energy content of the body in
reference to the environment temperature

Q0 = ρcV(Ti− T∞)= ρcVθi [4-16]

In these figures Q is the actual heat lost by the body in time τ.
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Figure 4-5 Temperature distribution in the semi-infinite solid with convection boundary condition.
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Figure 4-6 Nomenclature for one-dimensional solids suddenly subjected to convection
environment at T∞: (a) infinite plate of thickness 2L; (b) infinite cylinder of
radius r0; (c) sphere of radius r0.
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Figure 4-7 Midplane temperature for an infinite plate of thickness 2L: (a) full scale.
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Figure 4-7 (Continued). (b) expanded scale for 0< Fo< 4, from Reference 2.
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If one considers the solid as behaving as a lumped capacity during the cooling or heating
process, that is, small internal resistance compared to surface resistance, the exponential
cooling curve of Figure 4-5 may be replotted in expanded form, as shown in Figure 4-13
using the Biot-Fourier product as the abscissa. We note that the following parameters apply
for the bodies considered in the Heisler charts.

(A/V)inf plate = 1/L

(A/V)inf cylinder = 2/r0
(A/V)sphere = 3/r0

Obviously, there are many other practical heating and cooling problems of interest. The
solutions for a large number of cases are presented in graphical form by Schneider [7], and
readers interested in such calculations will find this reference to be of great utility.

The Biot and Fourier Numbers

A quick inspection of Figures 4-5 to 4-16 indicates that the dimensionless temperature
profiles and heat flows may all be expressed in terms of two dimensionless parameters
called the Biot and Fourier numbers:

Biot number = Bi = hs

k

Fourier number = Fo = ατ

s2
= kτ

ρcs2

In these parameters s designates a characteristic dimension of the body; for the plate it is
the half-thickness, whereas for the cylinder and sphere it is the radius. The Biot number
compares the relative magnitudes of surface-convection and internal-conduction resistances

admin
강조

admin
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Figure 4-8 Axis temperature for an infinite cylinder of radius r0: (a) full scale.
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Figure 4-8 (Continued). (b) expanded scale for 0< Fo< 4, from Reference 2.
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to heat transfer. The Fourier modulus compares a characteristic body dimension with an
approximate temperature-wave penetration depth for a given time τ.

A very low value of the Biot modulus means that internal-conduction resistance is
negligible in comparison with surface-convection resistance. This in turn implies that the
temperature will be nearly uniform throughout the solid, and its behavior may be approxi-
mated by the lumped-capacity method of analysis. It is interesting to note that the exponent
of Equation (4-5) may be expressed in terms of the Biot and Fourier numbers if one takes
the ratio V/A as the characteristic dimension s. Then,

hA

ρcV
τ= hτ

ρcs
= hs

k

kτ

ρcs2
= Bi Fo

Applicability of the Heisler Charts

The calculations for the Heisler charts were performed by truncating the infinite series
solutions for the problems into a few terms. This restricts the applicability of the charts to
values of the Fourier number greater than 0.2.

Fo = ατ

s2
> 0.2

For smaller values of this parameter the reader should consult the solutions and charts given
in the references at the end of the chapter. Calculations using the truncated series solutions
directly are discussed in Appendix C.
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Figure 4-9 Center temperature for a sphere of radius r0: (a) full scale.
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Figure 4-9 (Continued). (b) expanded scale for 0< Fo< 3, from Reference 2.
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Figure 4-10 Temperature as a function of center temperature in an
infinite plate of thickness 2L, from Reference 2.
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Figure 4-11 Temperature as a function of axis temperature in an
infinite cylinder of radius r0, from Reference 2.
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Figure 4-12 Temperature as a function of center temperature for a
sphere of radius r0, from Reference 2.
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Figure 4-13 Temperature variation with time for solids that may be
treated as lumped capacities: (a) 0<BiFo< 10,
(b) 0.1<BiFo< 1.0, (c) 0<BiFo< 0.1.
Note: (A/V)inf plate = 1/L, (A/V)inf cyl = 2/r0,
(A/V)sphere = 3/r0. See Equations (4-5) and (4-6).
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Figure 4-13 (Continued).
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Figure 4-14 Dimensionless heat loss Q/Q0 of an infinite plane of thickness 2L with time,
from Reference 6.
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Figure 4-15 Dimensionlesss heat loss Q/Q0 of an infinite cylinder of radius r0 with time,
from Reference 6.
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Figure 4-16 Dimensionless heat loss Q/Q0 of a sphere of radius r0 with time, from
Reference 6.
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Sudden Exposure of Semi-Infinite
Slab to Convection EXAMPLE 4-5

The slab of Example 4-4 is suddenly exposed to a convection-surface environment of 70◦C with
a heat-transfer coefficient of 525 W/m2 · ◦C. Calculate the time required for the temperature to
reach 120◦C at the depth of 4.0 cm for this circumstance.

Solution
We may use either Equation (4-15) or Figure 4-5 for solution of this problem, but Figure 4-5 is
easier to apply because the time appears in two terms. Even when the figure is used, an iterative
procedure is required because the time appears in both of the variables h

√
ατ/k and x/(2

√
ατ).
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160 4-4 Convection Boundary Conditions

We seek the value of τ such that

T − Ti
T∞ − Ti = 120 − 200

70 − 200
= 0.615 [a]

We therefore try values of τ and obtain readings of the temperature ratio from Figure 4-5 until
agreement with Equation (a) is reached. The iterations are listed below. Values of k and α are
obtained from Example 4-4.

τ, s

h
√

ατ

k

x

2
√

ατ

T − Ti

T∞ − Ti
from Figure 4-5

1000 0.708 0.069 0.41
3000 1.226 0.040 0.61
4000 1.416 0.035 0.68

Consequently, the time required is approximately 3000 s.

EXAMPLE 4-6 Aluminum Plate Suddenly Exposed to Convection

Alarge plate of aluminum 5.0 cm thick and initially at 200◦C is suddenly exposed to the convection
environment of Example 4-5. Calculate the temperature at a depth of 1.25 cm from one of the faces
1 min after the plate has been exposed to the environment. How much energy has been removed
per unit area from the plate in this time?

Solution
The Heisler charts of Figures 4-7 and 4-10 may be used for solution of this problem. We first
calculate the center temperature of the plate, using Figure 4-7, and then use Figure 4-10 to calculate
the temperature at the specified x position. From the conditions of the problem we have

θi = Ti− T∞ = 200 − 70 = 130 α= 8.4 × 10−5 m2/s [3.26 ft2/h]
2L= 5.0 cm L= 2.5 cm τ= 1 min = 60 s

k = 215 W/m · ◦C [124 Btu/h · ft · ◦F]
h= 525 W/m2 · ◦C [92.5 Btu/h · ft2 · ◦F]
x= 2.5 − 1.25 = 1.25 cm

Then

ατ

L2
= (8.4 × 10−5)(60)

(0.025)2
= 8.064

k

hL
= 215

(525)(0.025)
= 16.38

x

L
= 1.25

2.5
= 0.5

From Figure 4-7

θ0

θi
= 0.61

θ0 = T0 − T∞ = (0.61)(130)= 79.3

From Figure 4-10 at x/L= 0.5,
θ

θ0
= 0.98

and

θ = T − T∞ = (0.98)(79.3)= 77.7

T = 77.7 + 70 = 147.7◦C
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We compute the energy lost by the slab by using Figure 4-14. For this calculation we require the
following properties of aluminum:

ρ= 2700 kg/m3 c= 0.9 kJ/kg · ◦C

For Figure 4-14 we need

h2ατ

k2
= (525)2(8.4 × 10−5)(60)

(215)2
= 0.03

hL

k
= (525)(0.025)

215
= 0.061

From Figure 4-14
Q

Q0
= 0.41

For unit area

Q0

A
= ρcVθi

A
= ρc(2L)θi

= (2700)(900)(0.05)(130)

= 15.8 × 106 J/m2

so that the heat removed per unit surface area is

Q

A
= (15.8 × 106)(0.41)= 6.48 × 106 J/m2 [571 Btu/ft2]

Long Cylinder Suddenly Exposed to Convection EXAMPLE 4-7

A long aluminum cylinder 5.0 cm in diameter and initially at 200◦C is suddenly exposed to a
convection environment at 70◦C and h= 525 W/m2 · ◦C. Calculate the temperature at a radius of
1.25 cm and the heat lost per unit length 1 min after the cylinder is exposed to the environment.

Solution
This problem is like Example 4-6 except that Figures 4-8 and 4-11 are employed for the solution.
We have

θi= Ti− T∞ = 200 − 70 = 130 α= 8.4 × 10−5 m2/s

r0 = 2.5 cm τ= 1 min = 60 s

k= 215 W/m · ◦C h= 525 W/m2 · ◦C r= 1.25 cm

ρ = 2700 kg/m3 c= 0.9 kJ/kg · ◦C

We compute

ατ

r20

= (8.4 × 10−5)(60)

(0.025)2
= 8.064

k

hr0
= 215

(525)(0.025)
= 16.38

r

r0
= 1.25

2.5
= 0.5

From Figure 4-8
θ0

θi
= 0.38

and from Figures 4-11 at r/r0 = 0.5
θ

θ0
= 0.98
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so that
θ

θi
= θ0

θi

θ

θ0
= (0.38)(0.98)= 0.372

and

θ= T − T∞ = (0.372)(130)= 48.4

T = 70 + 48.4 = 118.4◦C

To compute the heat lost, we determine

h2ατ

k2
= (525)2(8.4 × 10−5)(60)

(215)2
= 0.03

hr0

k
= (525)(0.025)

215
= 0.061

Then from Figure 4-15
Q

Q0
= 0.65

For unit length

Q0

L
= ρcVθi

L
= ρcπr20θi= (2700)(900)π(0.025)2(130)= 6.203 × 105 J/m

and the actual heat lost per unit length is

Q

L
= (6.203 × 105)(0.65)= 4.032 × 105 J/m [116.5 Btu/ft]

4-5 MULTIDIMENSIONAL SYSTEMS
The Heisler charts discussed in Section 4-4 may be used to obtain the temperature distri-
bution in the infinite plate of thickness 2L, in the long cylinder, or in the sphere. When a
wall whose height and depth dimensions are not large compared with the thickness or a
cylinder whose length is not large compared with its diameter is encountered, additional
space coordinates are necessary to specify the temperature, the charts no longer apply, and
we are forced to seek another method of solution. Fortunately, it is possible to combine the
solutions for the one-dimensional systems in a very straightforward way to obtain solutions
for the multidimensional problems.

It is clear that the infinite rectangular bar in Figure 4-17 can be formed from two
infinite plates of thickness 2L1 and 2L2, respectively. The differential equation governing
this situation would be

∂2T

∂x2
+ ∂2T

∂z2
= 1

α

∂T

∂τ
[4-17]

and to use the separation-of-variables method to effect a solution, we should assume a
product solution of the form

T(x, z, τ)=X(x)Z(z)
(τ)
It can be shown that the dimensionless temperature distribution may be expressed as a
product of the solutions for two plate problems of thickness 2L1 and 2L2, respectively:(

T − T∞
Ti− T∞

)
bar

=
(
T − T∞
Ti− T∞

)
2L1 plate

(
T − T∞
Ti− T∞

)
2L2 plate

[4-18]

where Ti is the initial temperature of the bar and T∞ is the environment temperature.




