
Chapter 3:  The Derivative
3.1: Limits



• Algebra deals with static situations (what will 
something cost in 3 years?)

• Calculus deals with dynamic situations (when 
does the growth of a population begin to slow 
down)

• The concept of a limit is a fundamental concept 
in calculus.  One use is in applications that 
include maximizations. 

• The idea of the limit of a function is what 
connects algebra and geometry to the 
mathematics of calculus.   



There are multiple methods to Finding 
Limits:  Case 1
• If a polynomial function is defined at a point, 

then the limit is obtained by direct substitution

• Example:
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Case 2

• In a rational function, if direct substitution 
results in a 0 in both the numerator and 
denominator, (this is called the indeterminant
form) factor both, reduce to lowest terms, then 
use direct substitution.

• Example:  
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Case 3

• In a rational function, if direct substitution 
results in division by zero, evaluate small 
increments close to a, from both the left and the 
right.  Note that x = a is a vertical asymptote.  In 
order for a function to have a limit at a point, its 
right- and left-hand limits have to be the same.  
If not, the limit does not exist.  The limit may 
occur at the vertical asymptote. 
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Definition of a Limit

• If f(x) becomes arbitrarily close to a unique 
number L as x approaches c from either side, the 
limit of f(x) as x approaches c is L.  This is 
written lim ( )
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Case 4

• You can estimate the limit by substituting 
increasingly larger values for n. (look at 100, 
1000, 100000000…)

• Ex:  Find  .  When n = 100,

• As n gets larger and larger,     approaches 

0 and so does  .  So, = 0.  
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Case 4 Continued

• Ex:  Find                    :  
(0.99)1000 = 4.3 x 10-5.  
(0.99)10,000 = 2.2 x 10-44

• So, 
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Case 5

• Divide the numerator and denominator by the 
highest power of n that occurs in the 
denominator. 
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You Do 2
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Increasing Without Bound

• Sometimes, the terms of a sequence increase 
without bound, in which case, the limit does not 
exist.

• Ex:  3, 7, 11, 15, … 4n – 1, … so 
• Ex:  -10, -100, -1000, … -10n, … so 
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