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What is a Signal?

 Type of signals

 Speech signal, visual signal, e-mail over internet etc.

 Heartbeat, blood pressure, temperature of a patient

 Weather forecast, stock price

 One dimensional vs. multidimensional signals

 Speech signal  One dimensional

 Image signal  Multidimensional 

A signal is formally defined as a function of one or more variables that
conveys information on the nature of a physical phenomenon.
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What is System?

 Examples of system

 Vocal track, electronic systems

 The purpose of system depends on the application

 Automatic speaker recognition system : recognizing 
the speaker

 Communication system : transporting the information

 Aircraft landing system : To keep the aircraft on the 
extended centerline of a runway

A system is an entity that manipulates one or more signals 
to accomplish a function, thereby yielding new signals.
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Overview of Specific Systems

 Block diagram of a system

 Communication systems

• Sampling
• Quantization
• Coding

• Broadcasting
• Point-to-point

communication

• Channel coding/decoding
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Classification of Signals (1)

 In this book,

 Single valued signal or one-dimensional signal

 Real-valued signal or complex-valued signal

 (1) Continuous-time vs. discrete-time signals

 Continuous-time signal if it is defined for all time t

 Discrete-time signal if it is defined only at discrete 
instants of time

 Continuous-time signal  Discrete-time signal : sampling

𝑥 𝑛 = 𝑥 𝑛𝑇 , 𝑛 = 0, ±1, ±2, ⋯𝑥 𝑡 , −∞ < 𝑡 < ∞
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Classification of Signals (2)

 (2) Even and odd signals

 Even signal if 

 Odd signal if 

ttxtx   allfor )()( 

ttxtx   allfor )()( 
 symmetric

 anti-symmetric

Example 1.1 EVEN AND ODD SIGNALS
















otherwise,0

,sin
)(

TtT
T

t
tx



Is       odd or even function ?)(tx
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Classification of Signals (3)

 In general                     , therefore

 Conjugate symmetric if

)()()( txtxtx oe 

 ;)()(
2

1
)( txtxtxe   )()(

2

1
)( txtxtxo 

Example 1.2 EVEN AND ODD SIGNALS

tetx t cos)( 2 Find the even and odd components of the signal.

)()( * txtx 








)()(

)()(
)()()()(

tbtb

tata
tjbtatjbta

(Problem 1.1, 1.2)
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Classification of Signals (4)

 (3) Periodic signals vs. non-periodic signal

A periodic signal if it satisfies the condition,

tTtxtx   allfor      ),()( 

Fundamental period : smallest value of T that satisfies Eq. (1.7)

Fundamental frequency : the reciprocal of the fundamental period

T
f

1
 hertz (Hz) or cycles per second

Angular frequency : measured in radians per second

T
f

 2
2 

aperiodic signal of which no value of T satisfies Eq. (1.7)

(1.7)

(aperiodic or nonperiodic signal)

[radian/sec]
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Classification of Signals (5)

periodic signal with amplitude A=1, 
and periodic T=0.2s

nonperiodic signal with amplitude A, 
and duration T1

(Problem 1.3)

For discrete-time signal, x[n] is said to be periodic if

    nNnxnx integer for      ,

Fundamental angular frequency of x[n] is defined by

N

2
 [radian]
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Classification of Signals (6)

(Problem 1.4, 1.5)

 (4) Deterministic signals vs. random signals

Deterministic signal : there is no uncertainty with respect to its value 
at any time (ex. periodic signal)

Random signal : there is uncertainty before it occurs (ex. noise)

Angular frequency?
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Classification of Signals (7)

 (5) Energy signals and power signals

Instantaneous power dissipated in a resistor

Rti
R

tv
tp )(

)(
)( 2

2



For 1-ohm resistor condition, )()( 2 txtp 

Total energy of the continuous-time signal, )(tx

dttxdttxE
T

TT 



 )()(lim 22

2

2

Time-averaged or average power, 

dttx
T

P
T

TT 


2

2

2 )(
1

lim

For a periodic signal,

dttx
T

P
T

T
2

2

2 )(
1
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Classification of Signals (8)

In case of a discrete-time signal, total energy becomes

 





n

nxE 2

Average power is defined by

 





N

Nn
N

nx
N

P 2

2

1
lim

For a periodic signal,

 





1

0

21 N

n

nx
N

P

Energy signal if and only if 

 E0

Power signal if and only if 

 P0

Comments
• Energy and power classifications are mutually exclusive
• Energy signal : zero time-averaged power
• Power signal : infinite energy

(Problem 1.6 ~ 1.9)
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Basic Operations on Signals (1)

 Operation performed on dependent variables

Amplitude scaling : amplifier

)()( tcxty     ncxny  where c is scaling factor

Addition

)()()( 21 txtxty       nxnxny 21 

Physical example : audio mixer  signal  voice:   signal, music: 21 xx

Multiplication : AM radio signal

)()()( 21 txtxty       nxnxny 21

Differentiation

)()( tx
dt

d
ty 

)()( ti
dt

d
Ltv 
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Basic Operations on Signals (2)

 dxty
t

 
 )()(

 di
C

tv
t

 
 )(

1
)(

 Operation performed on independent variable

Time scaling

 atxty )(     0,  kknxny

• : compressed version of
• : expanded version of

1a
10  a

(Problem 1.10)

 tx
 tx

Integration
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Basic Operations on Signals (3)

Reflection

 txty )(
• Even signal :
• Odd signal :  

)()( txtx 
)()( txtx 

Example 1.3 REFLECTION

)(txFind the reflected version of 

(Problem 1.11, 1.12)

Time shifting

 0)( ttxty 

• : y(t) is obtained by shifting x(t) toward right
• : y(t) is obtained by shifting x(t) toward left

00 t
00 t

   mnxny 
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Basic Operations on Signals (4)

Example 1.4 TIME SHIFTING

)2()(  txtyFind

(Problem 1.13)

 Precedence rule for time shifting and time scaling

?)()( batxty  )()(    )()( atvtybtxtv 

Example 1.5 TIME SHIFTING

For       of unit amplitude and a duration of 2 time units, find)(tx )32()(  txty
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Basic Operations on Signals (5)

Correct! Incorrect! 

Problem 1.14
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Basic Operations on Signals (6)

Example 1.6 Precedence rule for discrete-time signal

 














.2 and  0,0

             2,1,1

                2,1,1

n n

n

n

nx    32  nxnyFind

(Problem 1.15)
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Elementary Signals (1)

Exponential Signals

atBetx )(

  nBrnx 

• : Growing exponential
• : Decaying exponential

0a
0a

• : Growing exponential
• : Decaying exponential

1r
10  r
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Elementary Signals (2)

0)()(  tvtv
dt

d
RC

)(tv
• RC : Time constant
• The larger the resistor R, the slower will be the rate of decay of

 RCteVtv  0)(

Sinusoidal Signals

   tAtx cos)(


2

TPeriod : 

  
 
 
  )(cos

2cos

cos

cos)(

txtA

tA

TtA

TtATtx













 6cos  tA

 6sin  tA
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Elementary Signals (3)

   
        ,cos

,cos







NnANnx

nAnx

Discrete-time sinusoidal signal

Example 1.7 Discrete-time sinusoidal signals

       nnxnnx  5cos3,5sin 21 

    ][21 nxnxny 
(a) Find their common fundamental period.
(b) Express the composite sinusoidal signal

in the form                              .    nAny cos

cleradians/cy
2

or     2
N

m
mN

 

For the above signal to be periodic,

    12,0,1for    cos  NAnAnx 

Nm   ,integer  for  
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Elementary Signals (4)
(a)  The angular frequency of both    nxnx 21   and  

rad/sec  5

5

2

5

22
  Thus,

mmm
N 







For                        to be periodic, N must be an integer.   nxnx 21   and  

(b)  Recall the trigonometric identity

          sinsincoscoscos nAnAnA 

Letting          ,  the right-hand side is of the same form as5    nxnx 21  

    3cos  and  1sin  Therefore,   AA

   
  6

 
3

1

cos

sin
tan



 


   2

6sin

1








A

  





 

6
5cos2

nny

𝑚 = 5,10,15, ⋯   →    𝑁 = 2,4,6, ⋯
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Elementary Signals (5)

(Problem 1.16 ~ 1.18)

Relation bet. sinusoidal and complex exponential signals

 sincos je j  : Euler’s identity;    tjj BetAAeB   Recos; 
     tjBetAtAtx  Imsin;sin)( 

   
   nj

nj

BenA

BenA








Imsin

Recos





4  of  case  For  the 
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Elementary Signals (6)

Exponentially damped sinusoidal signals

  .0,sin)(    tAetx t

06,60,For   A

Example : Parallel RLC circuit

0)(
1

)(
1

)(   
 dv

L
tv

R
tv

dt

d
C

t

Integro-differential Eq.

Solution

 
2200

2
0 4

11
;0,cos)(

RCLC
tteVtv CRt   

(Problem 1.20 ~ 1.21)



• Discrete-time version of the exponentially damped sinusoidal signal

    10   where,sin  rnBrnx n 
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Elementary Signals (7)

Step Function

 








0,0

0,1

n

n
nu n

0 1 2 3 4 5-1-2-3-4-5

u[n]

 








0,0

0,1

t

t
tu

Example 1.8 Rectangular Pulse

   txtx

tAutAutx

12

2

1

2

1
)(









 






 

Express x(t) as a weighted sum of two
step functions

1
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Elementary Signals (8)

Impulse Function

 








0,0

0,1

n

n
n     1   and    0for     0  




dtttt 

 n

  )(tu
dt

d
t 

• Impulse function vs. step function

   txt 


0
lim

    


t
dtu 

 t  tax

2 2

 tx

22

a
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Elementary Signals (9)

Example 1.10 RC Circuit

)()( 0 tuVtv 

Determine the current that flows
through the capacitor for        . 0t

)()( tv
dt

d
Cti 

)()()( 00 tCVtu
dt

d
CVti 

The other properties of Impulse function

  )()( 00 txdttttx 



 : Shifting property

  0,
1

)(  at
a

at 

: Time-scaling property

 tt   )( : Even function



1

a a

1
a
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Elementary Signals (10) : skip

Derivatives of the Impulse Function

• Impulse is the limiting form of a rectangular of duration    and amplitude
• First derivative

 One impulse of strength      , located at
 A second impulse of strength         , located at

 1

1 2t
1 2t

      22
1

lim)(
0

1 





ttt  : doublet

Properties of doublet

     
0

)()(;0)( 0
11

tt

tf
dt

d
dttttfdtt










  

• Second derivative

        22
1

lim)()( 11

0

1
2

2







ttt
dt

d
t

dt

d 

       
00

)()(;)()( 02

2

0
2

tt

n

n
n

tt

tf
dt

d
dttttftf

dt

d
dttttf
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Elementary Signals (11)

Ramp Function

)()(
0,0

0,
)( ttutr

t

tt
tr 








      nnunr
n

nn
nr 









0,0

0,

n
0 1 2 3 4 5-1-2-3-4-5

r[n]

Example 1.11 Parallel Circuit )()( 0 tuIti 

   

)(
0),(

0,0

11
)(

0
0

0

tr
C

I
tttu

C

I
t

duI
C

di
C

tv
tt
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Interconnected Systems

• Interconnected system  Interconnection of operations (mathematical term)
operator

 )()( txHty      nxHny 

Example 1.12 Moving-Average System

        21
3

1
 nxnxnxny

 21
3

1
SSH 

moving-average system

Define discrete-time-shift operator :

cascade parallel

kS
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Properties of Systems (1)

Stability

• Bounded-input, bounded-output (BIBO) stable if and only if every bounded
input results in a bounded output

• For                  , operator H is BIBO stable if  )()( txHty 

tMtxtMty xy   allfor    )(      where  allfor    )( 

numbers positive finite some : , yx MM

Example 1.13 Moving-Average System

              

  xxxx MMMM

nxnxnxnxnxnxny





3

1

21
3

1
21

3

1

Show that the moving-average system is BIBO stable.

Assume that   .  allfor     nMnx x 
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Properties of Systems (2)

Example 1.14 Unstable System

Show that the following system is unstable where        .

Assume that   .  allfor     nMnx x 

1r

     nxrnxrny nn 

   nxrny n

With        , the multiplying factor     diverges for increasing n.1r nr

(Problem 1.26)

Memory

• A system is said to possess memory if its output depends on past or future
values of the input

• A system is said to possess memory-less if its output depends only on the 
present value of input

(Refer to Fig. 1.52)
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Properties of Systems (3)

 

            nxnynxnxnxny

dv
L

titv
R

ti
t

2;21
3

1

1
)();(

1
)(



  


Examples :

(Problem 1.27 ~ 1.29)

Causality

• A system is said to be causal if the present value of output depends only on
present or past values of input

• A system is said to be non-causal if its output depends on one or more 
future values of the input

                 11
3

1
;21

3

1
 nxnxnxnynxnxnxny

(Problem 1.30, 1.31)
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Properties of Systems (4)

Invertibility

• A system is said to be invertible if the input of the system can be recovered
from the output

      )()()( txHHtxHHtyH invinvinv 

IHH inv  : Identity operator
invH• : inverse operator;     its associated system : inverse system

• In general, the problem of finding the inverse system is difficult one
• Invertibility is of importance in the design of communication systems.
• Distinct inputs should produce distinct outputs : one-to-one mapping!

Example 1.15 Inverse of System

      )()()( 00000 txSStxSStyS ttttt  

 )()()( 0
0 txSttxty t operatorshift  - time:0tS

We require that ISS tt  00
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Properties of Systems (5)

Example 1.16 Non-invertible System

)()( 2 txty 

To violate a necessary condition for invertibility : one-to-one mapping!
 not invertible!!

(Problem 1.32)

Time Invariance

• A system is said to be time invariant if a time delay or time advance of the
input leads to an identical time shift in the output.

• Otherwise, called time variant

   )()()()( 00 ttxHttytxHty TI 
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Properties of Systems (6)

    
 )(

)()()(

1

1012

0

0

txHS

txSHttxHty
t

t



     
 )(

)()()(

1

1101

0

00

txHS

txHStyStty
t

tt





• For time invariant system,
• Two operators must commute with each other for all 

HSHS tt 00 
0t

Example 1.17 Inductor

   dx
L

ty
t

 
 11

1
)( • Input : voltage across an inductor

• Output : current through the inductor

 dtx
L

ty
t

 
 )(

1
)( 012  dx

L
tty

tt







0

)(
1

)( 101

,Put  0
/ t two equations become equal to each other
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Properties of Systems (7)

Example 1.18 Thermistor

)(

)(
)( 1

1 tR

tx
ty  • Resistance varies with temperature

• Input : voltage across a thermistor
• Output : current through the thermistor

)(

)(
)( 01

2 tR

ttx
ty




)(

)(
)(

0

01
01 ttR

ttx
tty






    0for     00  tttRtRSince, in general, 

    0for     0201  ttytty Time variant!! 

(Problem 1.33)

Linearity

• A system is said to be linear if it satisfies the following two properties
 Principle of superposition

 Homogeneity : Whenever input is scaled by   , output is scaled by
exactly the same constant factor   .

       )(,)( 2211 txHtytxHty       )()( 2121 txtxHtyty 
a

a
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Properties of Systems (8)

  












N

i
ii

N

i
ii

N

i
ii tyatxHatxaHty

111

)()()()(

Linearity

Example 1.19 Linear Discrete-Time System

   nnxny 

∴ it is a linear system 

Show that this system is linear. 

   



N

i
ii nxanx

1

       



N

i
ii

N

i
ii

N

i
ii nyannxanxanny

111

Example 1.20 Non-linear Continuous-Time System )1()()(  txtxty





N

i
ii txatx

1

)()(



 



 





N

i
ii

N

i

N

j
jiji

N

j
jj

N

i
ii

tya

txtxaatxatxaty

1

1 111

)(

)1()()1()()(

∴ it is non-linear! 

(Problem 1.34 ~ 1.36)
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Noise

• Noise : unwanted signal
 Tend to disturb the operation of a system
 We have incomplete control over it

 dttv
T

v
T

TT 


2

1
lim

• External sources of noise : atmospheric noise, galactic noise, and human-
made noise

• Internal sources of noise : electrical noise, etc.

Thermal Noise

• To arise from the random motion of electrons in a conductor
• Time-averaged value

• Time-average-squared value

 dttv
T

v
T

TT 
 22

2

1
lim

22   volt4 fRkTv abs 

22 amps  4 fGkTi abs 
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Homework #1

 To solve more than 10 additional problems but the 
following are mandatory

 42, 44, 46, 47, 52, 53, 54

 Due date :


