Tissue Engineering & Materials Processing

Replacements Parts

Features of Soft Tissues

- Multi-cellular
- Three-dimensional structures
- Multi-functional
- Takes cues from the environment
- Blend in with surroundings

Tissue Engineering

Applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function.

Engineered Heart Patches and Blood Vessels

Engineered Skin

Tissue Scaffold Approach:

Scaffold Fabrication Methods

Solvent Casting (I)

• Procedure:

Polymer is dissolved in a suitable solvent; Poured into a mold and frozen;

 Solvent is then removed, leaving the polymer set in the desired shape.

Polymer concentration: 10-30%

Advantages

Ease of fabrication, without the need of specialized equipment; Simple; Inexpensive; Room Temperature, no effect on degradation behavior.

Limitations

Limited to simple shapes -can be stacked;

Possible retention of toxic solvent within scaffold/ Can be overcome by allowing scaffold fully dry and using vacuum to further remove. Use solvent can denature proteins and other incorporated molecules.

Solvent Casting (II)

• Flat Structures

• Tubular Conduits

Spin casting/coating(A sub-type of solvent casting)

- Form Ultrathin films (<5μm). Polymer concentration 5-20%.
- Non-stick, smooth surfaces (Glass coverslips; silicon wafers)
- Rotation speed Acceleration Spinning time Solution viscosity Solution density

- Thickness of Film

1-5000 rpm

Vacuum

Leaching (I)—Particle Leaching

Leaching (II)—Ball Leaching

Leaching (III)—Fiber Leaching

Gas Foaming

• Route 1:

- Foam forming agent: Ammonium Bicarbonate;
- Vacuum dry or immerse in water.
- Route 2:
 - High pressure CO₂ for long time
 - Rapid decrease to atmospheric pressure

Emulsification/Freeze-drying (I)

- Polymer is dissolved in solvent, nonsolvent is added to form an emulsion, mixed well
- Mixture is cast into mold
- Quench using liquid nitrogen/low temperature
- Freeze-dried (Removal both solvent and nonsolvent)

10 µm

PDLLA (10%, 87/13, liq. nitrogen)

Emulsification/Freeze-drying (II)

Liqiud Nitrogen, 1% Polymer(PLGA) 87/13 solvent(Dioxane)/nonsolvent(Water)

Liqiud Nitrogen, 10% Polymer(PLGA) 87/13 solvent(Dioxane)/nonsolvent(Water)

Liqiud Nitrogen, 10% Polymer(PLGA) 90/10 solvent(Dioxane)/nonsolvent(Water)

Polymer concentration;

Solvent/Non-solvent ratio

Quenching condition (temperature)

-40 °C, 10% Polymer(PLGA) 87/13 solvent(Dioxane)/nonsolvent(Water)

-40 °C, 10% Polymer(PLGA) 90/10 solvent(Dioxane)/nonsolvent(Water)

-15 °C, 10% Polymer(PLGA) 87/13 solvent(Dioxane)/nonsolvent(Water)

-15 °C, 10% Polymer(PLGA)8 90/10 solvent(Dioxane)/nonsolvent(Water)

Melt Spinning

Electrospinning

Fiber Bonding (I)

- Welding by Melt (High temperature)
- Spray using polymer solution: Thin spray and thick spray. (Toxic solvent removal)

Fiber Bonding (II)

Tubular scaffold fabrication by thick spraying fiber bonding

Braid Techniques

3-D printing: Wafer Stacking System

Scaffold Assembly System (I)

25